
TRADITIONAL DATA-DRIVEN
SCIENTIFIC DISCOVERY METHODS

DO NOT SCALE TO LARGE DATASETS

•  7km GEOS-5 “Nature Run”
•  1 dataset, 3.5 PB
•  theoretically: openly accessible
•  practically: precomputed pics

1

COMMON WORKFLOW FOR
SCIENTIFIC DATA ANALYSIS

1.  Data Management: Acquisition, Conversion, and Regridding

2.  Computation and Analysis

3.  Visualization / Comparison

2

SPECIFIC TECHNICAL CHALLENGES THAT
PREVENT INTERACTIVE SCALING OF DATA-

DRIVEN DISCOVERY TO LARGE MODELS

•  File formats unsuitable for streaming
•  Batch mode data analyses

•  system: submit job and wait
• algorithm: only final results

•  Programming models not progressive
•  Server-side analysis does not scale to large communities

3

WE ADDRESS THE CHALLENGE OF
INTERACTIVE EXPLORATION AND

ANALYSIS OF MULTI-PETABYTE DATASETS
WITHOUT MASSIVE HPC RESOURCES

4

INTERACTIVE
MULTIRESOLUTION EXPLORATION

OF MASSIVE REMOTE DATASETS

5

(Please show multires_nature video now)

METHOD OVERVIEW

• Generic EDSL scripting
•  Progressive Runtime environment
• On-demand data reordering

6

EMBEDDED DOMAIN SPECIFIC LANGUAGE AND
RUNTIME FOR PROGRESSIVE COMPUTATION

• Incremental computation results
• EDSL supports…

• abstract data type (location, resolution, format)
• unordered loops
•  incremental publishing

•  renders current measure of data access irrelevant

7

PROGRESSIVE RUNTIME FOR
INCREMENTAL SCRIPT EXECUTION

•  incremental results
•  resolution level
•  loop order and parallelization
•  server-side processing

8

WHY AN EDSL?
THE IMPORTANCE OF GENERICITY

IN ANALYSIS SCRIPTS
• Genericity facilitates runtime utilization of…

•  incremental execution
• data format advantages
•  superior loop ordering
•  remote processing
• parallelization

9

EMBEDDED DSL FOR INCREMENTAL
COMPUTING

• Minimal extensions to host language
• doPublish, scientific data type, generic loops

•  Example operations of our data type:
• elementwise combinations (add, subtract, multiply,

divide, …)
•  statistical calculation (average, standard deviation,

range, median, …)
• domain selection (crop, paste, resize, interleave, …)

10

EDSL SCRIPT FOR INCREMENTAL
COMPUTATION OF AVERAGE

var output = Array.new();
var i = 0;
unordered(time, [start, end]) // generic loop
{
 var field = Array.read(‘fieldname’, time);
 // critical section (output and i must be updated atomically)
 {{
 output += (field - output) / (i + 1); // update incremental average
 i++;
 }}
 doPublish(); // make intermediate result available
} 11

EFFECT OF LOOP ORDERING AND
STREAMING DATA FORMAT FOR PETA-
SCALE CLIMATE DATA ANALYSIS AND

VISUALIZATION
•  3.5 petabyte 7km GEOS-5 “Nature Run” climate simulation dataset

12

13

PROGRAMMING MODEL AND RUNTIME SYSTEM
ALLOW ALTERNATIVE DATA ORGANIZATION AND

PROGRESSIVE COMPUTATIONS

PROGRAMMING MODEL AND RUNTIME SYSTEM
ALLOW ALTERNATIVE DATA ORGANIZATION AND

PROGRESSIVE COMPUTATIONS

14

COMPARISON OF DIFFERENT LOOP
ORDERINGS

15

(Please show order comparison video now)

ON-DEMAND DATA REORDERING FOR
INTERACTIVE VISUALIZATION AND ANALYSIS

OF MASSIVE, DISPARATELY LOCATED DATA

• Interactive access to massive data
• multiresolution data layouts (IDX)
• on-demand conversion (operational at LLNL)

16

INCREMENTAL MULTIRESOLUTION
DATA LOADING

(a) Coarse resolution

(b) Full resolution
17

(a) Coarse resolution

(b) Full resolution

ON-DEMAND DATA REORDERING FOR OPTIMAL
ACCESS OF MASSIVE SPATIOTEMPORAL DATA

18

EFFECT OF RESOLUTION ON SPEED AND
ACCURACY FOR A LARGE COMPUTATION

19

DISPARATELY LOCATED DATA CAN BE
PROCESSED IN MULTIPLE LOCATIONS

AT MOST SUITABLE RESOLUTION

• Eases multi-ensemble analyses
• automatic regridding (user has control)
• server-side distributed computation

20

RUNTIME: SERVER-SIDE PROCESSING

•  Server-side processing:
•  Identical scripting engine as client
•  Remote computation can dramatically reduce data transfer
•  Local vs remote computation specified per script

21

USING INTERACTIVE ANALYSIS FOR
DATASET ERROR DISCOVERY

correct zonal average

error: every 30 days
 duplicate first day!

22

CONCLUSION

• EDSL + Runtime for interactive, peta-scale data exploration
•  Incremental results of dataflow execution
• On-demand reordering for optimal data access

23

WHERE WE’RE GOING FROM HERE

• Compression of multiresolution data (w/ Peter Lindstrom, LLNL)
• exploring bit-level precision (e.g., specify 2-bits per item)

• Use abstract computation graph for distribution of computation
• Automatically determine resolution level, loop order, remote, ...
• Web interface
• Docker deployment

24

FLEXIBLE COMPRESSION CAPABILITIES:
COMBINING DATA REDUCTION IN

BOTH RESOLUTION AND PRECISION

25

•  Achieving better compression than each dimension alone

4 bits

1/8

8 bits 4 bits

½ size ​𝟏/𝟔𝟒 
size

4 bits

INTEGRATION WITH ESGF AND
EXISTING ANALYSIS TOOLS

• 2013: Using Python SWIG wrappers, UV-CDAT/ViSUS integration
• 2014: Automatic regridding; scripting system is created
• 2015: On-demand conversion of ESGF-hosted data to IDX
• 2016: EDSL formalized; server-side scripting added
• 2017: Integrate CDMS2 module level to enable first class

treatment of IDX datasets
• 2017: Multinode incremental server-side EDSL execution
• 2017: Web interface for EDSL-based data analysis and vis

26

THANK YOU

•  Co-authors: Shusen Liu, Giorgio Scorzelli, Ji-Woo Lee, Peer-Timo Bremer,
Valerio Pascucci

•  Collaborators: Dean Williams, Sasha Ames, Anthony Hoang, Sam Fries at LLNL

•  Funding: DOE NNSA, DOE DREAM, NSF, CCMSC, PIPER, ESGF, LLNL AIMS

•  Support and Suggestions: Duong Hoang, Sidharth Kumar, Brian Summa, Amy
Gooch, Vidhi Zala

27

EMBEDDED DSL AND RUNTIME FOR
PROGRESSIVE SPATIOTEMPORAL DATA

ANALYSIS AND VIS
•  Focus on data analysis, not data management
•  Incremental results, interruptible execution, interactive exploration
•  Transparent handling of massive, disparately-located data

10% complete

our method

final result

naive method

28

